Влияние микробиоты человека на развитие колоректального рака

Обложка

Цитировать

Полный текст

Аннотация

В статье представлен обзор литературы о влиянии микробиома организма в развитии онкологических заболеваний. Приведены данные о наиболее часто встречающихся бактериях у больных раком толстой кишки: Fusobacterium nucleatum, Bacteroidеs fragilis и некоторых штаммов Escherichia coli. Трансплантация фекальной микробиоты — это экспериментальный новый подход, включающий обмен кишечной микробиотой между людьми. Идентификация онкогенных штаммов бактерий значительно расширит наши возможности в диагностике и предотвращении развития злокачественных образований толстой кишки.

Об авторах

С. О. Кочкина

Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России

Автор, ответственный за переписку.
Email: sofia.kochkina@yandex.ru

Кочкина Софья Олеговна.

115478 Москва, Каширское шоссе, 24.

Россия

С. С. Гордеев

Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-9303-8379

115478 Москва, Каширское шоссе, 24.

Россия

З. З. Мамедли

Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0002-9289-1247

115478 Москва, Каширское шоссе, 24.

Россия

Список литературы

  1. de Martel C., Ferlay J., Franceschi S. et al. Global burden of cancer attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012;13(6):607—15. doi: 10.1016/S1470-2.045(12)70137-7.
  2. Garrett W.S. Cancer and the microbiota. Science 2015;348:80-6.
  3. Gagnaire A., Nadel B., Raoult D. et al. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017;15:109-28.
  4. Roy S., Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 2017;17:271-85.
  5. Zitvogel L., Daillere R., Roberti M.P. et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017;15:109-28.
  6. Lasry A., Zinger A., Ben-Neriah Y. In-flammatory networks underlying colorectal cancer. Nat Immunol 2016;7(3):230-40.
  7. Dalal S.R., Chang E.B. The microbial ba-sis of inflammatory bowel diseases. J Clin Invest 2014;24(10):4190-6.
  8. Tamboli C.P., Neut C., Desreumaux P., Colombel J.F. Dysbiosis in inflammatory bowel disease. Gut 2004;53(1):1—4.
  9. Kaiko G.E., Stappenbeck T.S. Host-mi-crobe interactions shaping the gastrointestinal environment. Trends Immunol 2014;5(11):538-48.
  10. Gilbert J.A., Quinn R.A., Debelius J. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016;535:94-103.
  11. Zitvogel L., Ayyoub M., Routy B., Kroemer G. Microbiome and anticancer immunosurveillance. Cell 2016;165:276-87.
  12. Nakatsu G., Li X., Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun 2015;6:8727.
  13. Yu G., Gail M.H., Consonni D. et al. Characterizing human lung tissue micro-biota and its relationship to epidemiologi-cal and clinical features. Genome Biol 2016;17(1):163.
  14. Guerrero-Preston R., Godoy-Vitorino F., Jedlicka A. et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016;7:51320-34.
  15. Hieken T.J., Chen J., Hoskin T.L. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 2016;6:30751.
  16. Rahbar A., Peredo I., Solberg N.W et al. Discordant humoral and cellular immune responses to cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. Oncoimmunology 2015;4:e982391.
  17. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7(7):688-93.
  18. Hakansson A., Molin G. Gut microbiota and inflammation. Nutrients 2011;3(6):637-82.
  19. Jandhyala S.M., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota. World J Gastroenterol 2015;21(29):8787-803.
  20. Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 2013;6(4):295-308.
  21. Wang J., Jia H. Metagenome-wide association studies: finemining the microbiome. Nat Rev Microbiol 2016;14(8):508—22.
  22. Feng Q., Liang S., Jia H. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6:6528.
  23. Kostic A.D., Gevers D., Pedamallu C.S. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292-8.
  24. Castellarin M., Warren R.L., Freeman J.D. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.
  25. Leung A., Tsoi H., Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol 2015;9(5):651 —7.
  26. Nakatsu G., Li X., Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015;6:8727.
  27. Ahn J., Sinha R., Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013;105:1907-11.
  28. Viljoen K.S., Dakshinamurthy A., Gold-berg P., Blackburn J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroidesfragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 2015;10:e0119462.
  29. Flanagan L., Schmid J., Ebert M. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014;33:1381-90.
  30. Mima K., Sukawa Y., Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015;1:653-61.
  31. Nosho K., Sukawa Y., Adachi Y. et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016;22:557-66.
  32. Liang Q., Chiu J., Chen Y. et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 2017;23:2061-70.
  33. Ai L., Tian H., Chen Z. et al. Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 2017;8:9546-56.
  34. Wu S., Rhee K.J., Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med 2009;15:1016-22.
  35. Sears C.L., Geis A.L., Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014;124:4166-72.
  36. Denizot J., Desrichard A., Agus A. et al. Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut 2015;64:428-37.
  37. Bonnet M., Buc E., Sauvanet P. et al. Colonization of the human gut by Escherichia coli and colorectal cancer risk. Clin Cancer Res 2014;20:859-67.
  38. Cougnoux A., Dalmasso G., Martinez R. et al. Bacterial genotoxin colibactin pro-motes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014;63:1932-42.
  39. Wylie K.M., Truty R.M., Sharpton T.J. et al. Novel bacterial taxa in the human microbiome. PloS One 2012;7(6):e35294.
  40. Kang M., Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Seminars in immunology. Academic Press, 2017. Vol. 32. Pp. 3-13.
  41. Goulas T., Arolas J.L., Gomis-Ruth F.X. Structure: function and latency regulation of a bacterial enterotoxin potentially de-rived from a mammalian adamalysin/ADAM xenolog. Proc Natl Acad Sci USA 2011;108(5):1856-61.
  42. Purcell R.V., Pearson J., Aitchison A.et al. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 2017;12(2):pe0171602.
  43. Wei Z., Cao S., Liu S. et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget 2016;7(29):46158-72.
  44. Kasai C., Sugimoto K., Moritani I. et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep 2016;35(1):325-33.
  45. Boleij A., Hechenbleikner E.M., Goodwin A.C. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60(2):208-15.
  46. Housseau F., Wu S., Wick E.C. et al. Re-dundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res 2016;76(8):2115-24.
  47. Deng Z., Mu J., Tseng M., Wattenberg B. et al. Enterobacteria-secreted particles in-duce production of exosome like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun 2015;6:6956.
  48. Wang K., Kim M.K., di Caro G. et al. In-terleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014;41(6):1052—63.
  49. Chae WJ., Gibson T.F., Zelterman D. et al. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci USA 2010;107(12):5540—4.
  50. Hyun Y.S., Han D.S., Lee A.R. et al. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 2012;33(4):931—6.
  51. Goodwin A.C., Destefano Shields C.E., Wu S. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011;108(37):15354—9.
  52. Irrazabal T., Martin A. T-regulatory cells gone bad: an oncogenic immune response against enterotoxigenic B. fragilis infection leads to colon cancer. Cancer Discov 2015;5(10):1021—3.
  53. Geis A.L., Fan H., Wu X. et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 2015;5(10):1098—9.
  54. Han Y.W. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015;23:141-7.
  55. Ye X., Wang R., Bhattacharya R. et al. Fusobacterium nucleatum subspecies animalis influences pro-inflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila) 2017;10(7):398—409.
  56. Yu J., Chen Y., Fu X. et al. Invasive Fuso¬bacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 2016;139(6):1318—26.
  57. Kostic A.D., Chun E., Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microb 2013;14(2):207—15.
  58. Mima K., Nishihara R., Qian Z.R. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65(12):1973—80.
  59. Rubinstein M.R., Wang X., Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesion. Cell Host Microb 2013;14(2):195—206.
  60. Tsoi H., Chu E.S.H., Zhang X. et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017;152(6):1419—33.
  61. Yazici C., Wolf P.G., Kim H. et al. Racedependent association of sulfidogenic bacteria with colorectal cancer. Gut 2017;66(11):1983—94.
  62. Lu R., Wu S., Zhang YG. et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic betacatenin signaling pathway. Oncogenesis 2014;3:e105.
  63. Lu R., Wu S., Zhang Y.G. et al. Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neo-plasia 2016;18(5):307—16.
  64. Elatrech I., Marzaioli V., Boukemara H. et al. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1. Inflamm Bowel Dis 2015;21(5):1018—26.
  65. Tomkovich S., Yang Y., Winglee K. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res 2017;77(10):2620—32.
  66. Arthur J.C., Perez-Chanona E., Mhhibauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbio¬ta. Science 2012;338(6103):120—3.
  67. Cougnoux A., Delmas J., Gibold L. et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2016;65(2):278—85.
  68. Arthur J.C., Gharaibeh R.Z., Mhhlbauer M. et al. Microbial genomic analysis reveals the essential role of in flammation in bacteria-induced colorectal cancer. Nat Commun 2014;5:4724.
  69. Bonnet M., Buc E., Sauvanet P. et al. Colonization of the human gut by Escherichia coli and colorectal cancer risk. Clin Cancer Res 2014;20(4):859—67.
  70. McKenney P.T., Pamer E.G. From hype to hope: the gut microbiota in enteric infectious disease. Cell 2015;163: 1326—32.
  71. Moayyedi P., Surette M.G., Kim P.T. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015;149:102—9.
  72. Kakihana K., Fujioka Y., Suda W. et al. Fecal microbiota transplantation for patients with steroid-resistant/dependent acute graft versus-host disease of the gut. Blood 2016;128:2083—8.
  73. Bel S., Elkis Y., Elifantz H. et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF—/—mice. Proc Natl Acad Sci USA 2014;11:4964—9.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 85909 от  25.08.2023.